
PROBLEMS WITH ONE-SIDED CONSTRAINTS FOR NAVIER-STOKES 

EQUATIONS AND THE DYNAMIC CONTACT ANGLE 

C. Baiocci and V. V. Pukhnachev UDC 532.516+532.64 

The dynamic contact angle raises a problem because of incompatibility between the condi- 
tions at a free liquid surface and the attachment conditions at a solid wall in the region 
of the moving line of contact between three phases. That incompatibility was first pointed 
out in [i] and was demonstrated in [2] subject to minimal assumptions about the smoothness 
of the velocity pattern and the free surface. There are various ways of closing the formula- 
tion for the motion of a viscous incompressible liquid in the presence of a moving line 
(or point in the two-dimensional case) for a three-phase contact: replacing the attachment 
condition by the condition for slip on a certain part of the wall near the line of contact 
[3-6], an asymptotic approach in which the solution is not extended to the line of contact 
[7], and a suggestion that the dynamic contact angle should be taken as ~ when the liquid 
spreads over the dry surface and zero as it withdraws [2]. 

The first two methods require empirical information (the coefficients in the various 
forms of the slip condition and the inclination of the free surface to the wall at a small 
distance from it), while the third is not applicable to the motion for small values of the 
capillary number Ca = pvV/o (p is the density of the liquid, v the kinematic viscosity, 
o the surface tension, and V the normal velocity of the three-phase contact line with respect 
to the wall). 

Here we propose a new approach to models for a viscous liquid having moving points of 
contact between the free boundary and a solid wall. We consider only two-dimensional sta- 
tionary cases (planar and axisymmetric). The capillary number is taken as small, and the 
free boundary can be defined approximately from the capillary-equilibrium conditions, after 
which one has to solve the Navier-Stokes equations with mixed boundary conditions. The 
boundary to the flow region contains nodal points, which the type of boundary condition 
alters. In general, there is not even a general solution having a finite Dirichlet integral. 
The formulation thus needs to be modified, and the proposed modification consists in replac- 
ing the integral identity satisfied by the general solution (if it exists) by a variational 
inequality. The one-sided constraint involved in the new formulation consists in sign-defi- 
niteness in the tangential component of the velocity on part of the boundary. 

It is shown that this inequality is soluble, and that the solution is unique for linear- 
ized Navier-Stokes equations. Particular cases are considered of capillary filling and 
flow in a rotating container, where the solution has a natural physical interpretation. 

i. Capillary Filling Model. Let a viscous incompressible liquid fill a planar verti- 
cal capillary of width 2a under gravity g. In a coordinate system linked to the moving 
points of contact, the flow is of stationary character, and we transfer to that system. 
We assume also that the motion above the points of contact tends to Poiseuille type, on which 
is superimposed a constant flow with velocity -V, which is defined by the condition for zero 
flow rate through the cross section: V = ga~v �9 We introduce dimensionless variables, where 
the scales for length, velocity, and pressure are a, V, and pvVa correspondingly. Then the 
equations of motion are 

Av - -  VP + 3 e l =  R e v ' v v ,  V 'V = 0. 

Here v = (v i, v~) and p are the dimensionless velocity vector and the pressure, with e l 

Re = Va/w the Reynolds number. 

(I.i) 

=(~,  o); 
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The flow is taken as asymmetrical with respect to the axis of the capillary x 2 = 0, 
and as the physical formulation is invariant under displacement along the x I axis, it fol- 
lows that the points of contact can be taken as x I =0, x 2 =--I and x I =0, x 2 =i.. The 
solution to (i.i) has to be found in the region ~ (Fig. i) bounded by the walls of the capil- 
lary x1<0, x 2 = --I and x1<0, x~ = i and the free boundary F = {Xl, X2:X 1 = /(x2) , 1221~ i}, 
which is not known in advance and has to be determined along with v, p.. The traditional 
formulation of the boundary-value problem for this system lies in specifying the attachment 
conditions at the capillary walls: 

v = - - e ~ ,  x ~ < O ,  x 2 = i t ,  (1.2) 

together with the kinematic condition 

v . n = O ,  (xl, x 2 ) ~ F  (1.3) 

and the dynamic conditions 

s . D .  n =  0,  (x l ,  x.,) ~ F;  

g = K + C a ( p  - -  2 n . D . n ) ,  (x~, x2) ~ F 

(1.4) 

(1.5) 

at the free boundary [8]. Here the symbols are as follows: n and s unit vectors for the 
exterior normal and tangent to the v curve, D = D(v) the deformation-rate tensor correspond- 

ing to vector v, with elements Of 1 ~ O.5(OuJOxj~-Ouj~xi), i, ] = I, 2 ; H the curvature of curve 

F; and K =--apa/o a constant (Pa is atmospheric pressure); Ca = pvV~. It is assumed that 

H > 0 if F is convex outwards from the liquid. 

Condition (1.3) means that F is a flow line. By virtue of (1.4), the tangential stress 
is zero on F. Condition (1.5) expresses the fact that the difference between the capillary 
pressure and the normal stress at points on the free boundary is equal to the atmospheric 
pressure. 

As ~ is noncompact, we have to impose a certain condition at Xl-+--~ in order to 
solve (i.i). We assume that far from the free boundary we get a flow close to a superposi- 
tion of a Poiseuille flow and a uniform one: 

v 1 ~ (1 - -  3x22)/2, v 2 ~ O, p --->- c o n s t ,  x l ~ - - c o ,  Ix~l <~ i .  (1.6) 

Finally, one needs to impose an additional condition at the points of contact between the 
free boundary and the solid walls, which we take by analogy with capillary equilibrium for 
a liquid [3] as 

f' = ~ctg~ at x 2 ---- __+i (1.7) 

with (?~ (0. ~] a constant quantity that is identified with the dynamic contact angle [3]. 

2. Asymptotic Simplification. The (1.1)-(1.7) treatment is one with an unknown bound- 
ary for a nonlinear equation system in an unbounded region. Also, if 7 < ~ in (1.7), the 
kinetic-energy dissipation rate near the points of contact is represented by a divergent 
integral [2], which casts doubt on the physical significance of the solution even if it 
exists in a wider class of functions than that usually employed in solving boundary-value 
problems for Navier-Stokes equations [9]. We reduce (1.1)-(1.7) to a more manageable treat- 
ment on the assumption that the defining parameters Re and Ca are small, and that their 
dependence on the input data is Be =ga~3v 2, Ca = p~a~o (the latter formula enables one to 
identify the capillary number with the Bond number here). One can make Re and Ca small by 
making the half-width of the channel a small with fixed values for the other input data. We 
put Re = 0 in (i.i) to get a Stokes system: 

Av--vp +3ei=0, V'V ----0. (2.1) 

The transition to the limit on the capillary number in (1.1)-(1.7) is based on the as- 
sumption that v-~0, Vv-+O. Av-~O, when Ca § 0, but then pCa-+K 0 ~ r , which corresponds 

to the limiting state of capillary equilibrium in the absence of external forces (see [10] 
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on the procedure for expanding the solution to a problem with a free boundary with respect 
to a parameter responsible for the deformability of the free surface, that parameter in our 
case being Ca). From (1.5) in the limit Ca § 0 we get H = K + K0 =const, so in the princi- 
pal order with respect to Ca, curve F is an arc of a circle: 

(xl -t- tg y)2 _}_ x~  = (cos ?)-z, Ix2] ~.~ 1. ( 2 . 2 )  

The circle's parameters are determined in accordance with (1.7). 

We make a further simplification partially justified by the St. Venant principle for a 
Stokes system [ii]: we assume that for x I + -~, the solution tends rapidly to a Poiseuille 
one, and we transfer condition (1.6) from infinity to a finite distance: 

~ 1 = ( 1 - - 3 x ~ ' ~ ) / 2 ,  U s = 0 ,  x 2 = - - l ,  [ z z I ~ < t .  ( 2 . 3 )  

Here s is a sufficiently large positive constant (in any case, ~ > i). Then the simplified 
treatment for the capillary filling will be examined below. 

We have to find the solution v, p to system (2.1) in the region H = {xl, x2: 0<x2<I, 

--i<x1< [(cosy)-2--x2~]I/2i-tg?} (hatched in Fig. i) that satisfies (2.3) and 

v = el, - - l ~ < x  1~<0 ,  x 2 =i; 

v.n  = 0, (X 1, x 2 ) ~  FI x~>~0; 

s - D ( v ) . n  = 0, (xl, x2) ~ F, x 2 / > 0 ;  

v~ = 0, Ov~/@x 2 ---- 0, - - l  ~< xt ~< tg(y/2 - -  ~/4), x.~ = 0, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

in which n and s are unit vectors for the normal and tangent to F as defined by (2.2). 

The (2.1)-(2.7) treatment is much simpler than the initial one: it is linear and the 
definition region for the solution is bounded. There are nodal points on the boundary of 
region ~. Three of them ( x l ~ - - - - - t ,  ~ 2 - = 1 ;  x l = - - - I  , x 2 =0; x l = t g ( y ~ - - ~ / 4 ) ,  x~ = 0), are right- 

angle vertices, and the boundary conditions on the lines forming those angles are consistent, 
so no singularities arise in the solution at those points (this statement is made without 
proof, but there is no doubt that it is correct, since those nodal points are of artificial 
origin). As regards the points of contact between the free boundary and the solid wall 

= 0, ~ : i , here the situation is different. If the contact angle satisfies 0 < u < v, 

there is no solenoidal vector field v that satisfies (2.4) and (2.5) and which has a finite 
Dirichlet integral [2]: 

~ V v : V v d x < ~  
H 

(Yv i s  t h e  g r a d i e n t  i n  v e c t o r  v and  t h e  c o l o n  r e p r e s e n t s  t e n s o r  c o n v o l u t i o n ) .  

We leave aside the question whether (2.1)-(2.7) is soluble in the class of functions v 
having unbounded Dirichlet integrals; such solutions describe flows having infinite energy 
dissipation rate, so they are only of academic interest. 

The values y = 0 and y = ~ are exceptional. We do not consider u = 0 because it is 
physically unrealizable in the capillary-filling case. With u = o, we follow the [12, 13] 
method to demonstrate existence and uniqueness for the general solution to (2.1) -(2.7) with 
finite Dirichlet integral. The solubility is related to the continuity in the velocity pat- 
tern near the points of contact, which occurs for y = ~ when the boundary of region N at 
x I = O, x 2 = I is smooth. 

This observation suggests that we should shift the point of change in conditions (2.4) 
with (2.5) and (2.6) along the solid wall in such a way that it is not a nodal point on the 
boundary. We thus assume that the attachment condition is replaced by the following condi- 
tions on a certain part of the wall adjoining the point of contact: 

(2.8) 
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OU1/OX. , = O, - - 6 < X l ~ O ,  X 2 = I ( 2 . 9 )  

( 6  < s i s  a s m a l l  p o s i t i v e  q u a n t i t y ) .  On t h e  r e s t  o f  t h e  w a l l ,  we r e t a i n  t h e  a t t a c h m e n t  c o n -  
d i t i o n :  

v ---- - - e l ,  - - l < ~ x l <  - - 6 ,  x 2 ---- t .  ( 2 . 1 0 )  

Condition (2.8) is that for no flow, while (2.9) is naturally called the ideal sliding condi- 
tion, which is the simplest of the conditions of that kind proposed in [3-6] and is used to 
describe the motion of the three-phase contact line along a rough wall (see the discussion on 
this in [14]). 

The small parameter 6 > 0 can be taken as the regularization parameter because (2.1), 
(2.3), (2.5)-(2.10) has a general solution, which is unique, for any ?~(0. a] That asser- 

tion is essentially a consequence of the [12, 13] results. Also, a variational formulation 
is possible: a solution can be obtained by minimizing the energy-dissipation functional 

J (v) = 2 1 D (v) : D (v) dx (2. i i) 
n 

on the set of solenoidal vector functions v having components v~ (g =I, 2) from the Sobolev 

class HI(H), that satisfy (2.3), (2.5), (2.8), (2.10) and the first condition in (2.7), which 
is the principal one for the (2.11) functional. Conditions (2.6) and (2.9) with the second 
one from (2.7) are natural ones, and they are met at the turning points in J. 

3. Variational Inequality. The Sec. 2 regularization of (2,1)-(2.7) contains 6, which 
cannot be determined from classical concepts on viscous-liquid dynamics. Here we present a 
modified formulation not containing additional parameters, which is also based on the varia- 
tional principle associated with (2.11), but instead of (2.8) and (2.10), which appear in the 
principal conditions for the variational treatment, we specify obedience to 

v2=o,  --l~<xl~<O, x~ '1 (3.1) 

and 

Vl<--i, - - l~x l<O,  X 2 = ~.  (3.2) 

Then (2.5) and (3.1) with the first equation in (2.7) show that the no-flow condition 
is met on the entire boundary of region ~ apart from the segment x1=--l, 0~x2~<i. The 
condition expressed by (3.2) is basic for Sec. 3. At the points where v I = -i, (3.2) becomes 
the attachment condition. At the same time, (3.2) does not rule out the possibility that the 
liquid slides with respect to the wall. For u < ~ and finite, J, that certainly occurs for 

small Ix11,~<O (see Sec. 2). 

The assumption ~<--I is a formalization of the intuitive view that the wall retards 
the motion, the reason for which is the force of gravity, it means that at points where the 
liquid moves relative to the wall, the absolute value of v I cannot be less than the wall 
velocity. 

It is inconvenient to minimize (2.11) because one of the principal conditions, (2.3), is 
inhomogeneous. We make the substitution 

v = u + w ,  (3.3) 

in which w is a vector having components 

wx = ~ ( ~ ) t O x . , ,  w~ = - - o ( ~ T ) l O z , .  (3.4) 

Here ~(x2) = ( x 2 -  x,,_~)/2 is the current function corresponding to Poiseuille-type flow, while 
~(x I, x=) is a truncating function. If ? ~> ~/2 (which is of the main physical interest), 

that function can be taken as ~ ~ N(xl), in which the function N ~ C~176 O] is subject to 

the conditions N = i for "l ~ x I ~ "e, i] ---- 0 for --e/2 <~ x I <~ 0 and 0 ~ N ~ i, d~]/dx I ~ 0 
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for all Xl~ I - - l ,  0] , but otherwise is arbitrary. For 0<?<~2 we put~ ~ ~l<l,lxa{l - 

[(cos ~)-z-- x~Z]vzq-tg?}>.. It is clear that in both cases ~ C~(H) and that ~ = 0 near 

the part F of the boundary to region H. We further assume 7 ~ z/2, which does not produce 
any substantial simplifications but reduces the exposition somewhat. 

The functional I is defined by 

I (u) = 2 ~ [D (u) : D (u) + 2D (u) : D (w)] dx. ( 3 . 5 )  
H 

Minimizing I is equivalent to that for J, since J(u q-w) -- I(u) is independent of u.. We 

put: E~ = {x 1, x2: - - l  < x 1 < 0 ,  X 2 = t}, Z 2 = {xa, xz: x I = - - l ,  0 < x 2 < ~}, ~3 = {xx, xz: --l < X 1 

t g ( ~ 2 " - - n / 4 ) ,  X 2 = 0}. The u n i o n  o f  t h e  s e t s  F, El ,  Z~ and  Z~ f o r m s  t h e  b o u n d a r y  o f  r e g -  

i o n  II. We define the functional space, Ha(~) as a closure in norm 

ll ~ [IH~(n) = D (~) : D (~) dx 

of the set of smooth vector functions ~, solenoidal in H that satisfy the conditions 

q).n = O, (xl, xz) ~ r ;  

q)2 = O, (Xl~ x2) ~ ~.1; 

q) = O, (Xl, x2) ~ ~,,2; 

(192 = O, (Xl. ~ X2) ~ 2 3. 

Space Hi(H) becomes a Hilbert one if for any pair of its elements 
scalar product from the formula 

(~, ~)nl(n) = a (~, ~) = ~ D (~) : D ( ~) dx. 
H 

The Korn  i n e q u a l i t y  [13]  a p p l i e s  f o r  f u n c t i o n s  f r o m  s p a c e  Hi(H) 

( 3 . 6 )  

(3.7) 

(3.8) 

(3.9) 

' S Vcp: V ~ d x  ~< Cl [1 ~l]~x(n ) 
II 

together with the Poincare-Friedricks inequality [9] 

and ~ we define the 

I q)]z dx <~ C, I ~# II~xl(n) 
II  

with positive constants C I and C 2 independent of ~ Finally, by K we denote the set 

K = {~ ~ Hi(H): ~1~N(xl)_l on El}, which is convex and closed in HI(H). (By virtue of 

the Koran and Poincare-Friedricks inequalities, the components ~ i and ~2 of vector ~HI(H) 

belong to the Sobolev space HI(H). , and according to the embedding theorem, the trace of 

~1 on the segment Z I is a function from the class Ha/2(Z1). , so the statement ~i ~(Xl)-- 

almost everywhere in Z I >> is meaningful). 

Variational-inequality theory [15] implies that minimizing (3.5) on the set K~HI(H) 

is equivalent to solving the variational inequality 

a(u, u - -  ~ ) ~ L ( u - -  ~) V ~  K, ( 3 . 1 0 )  

in which L is a linear functional upon the space HI(~). defined by 

L ( u ) = - - ~ D ( w ) : D ( u ) d x  ( 3 . 1 1 )  
II 
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(vector w is defined by (3.4)). The Lyons-Stampacci theorem [15] implies that a solution ex- 
ists to (3.10), which is unique. 

It is readily shown that (2.1) is satisfied by the vector function v constructed from 
u by means of (3.3) along with a suitable scalar function p in region H. In fact, let 

= ~I" ~2)" , in which @~ and ~= are any functions from C0~(H) such that V'~ = 0 . .  Then 

the vector functions ~ = u--~ and ~ = u-~ belong to K. In (3.10) we put in turn 
~i ~ u - - ~  and ~ : u + ~ ,  to  g e t  a ( u , ~ ) ~ L ( ~ ) . a ( u .  - - ~ ) ~ L ( - - ~ ) ,  which  means a(u,~)  = L ( ~ ) .  
We use the definition (3.11) of functional L and apply Green's formula to the Stokes system 

[9] to get 

i Av.~dx = O. 
n 

As the solenoidal vector ~ C o ~ ( H )  is arbitrary, the latter equation means that there exists 
a single-valued function p such that the first of the (2.1) equations is met in H in the dis- 
tribution sense. 

We now interpret the boundary conditions. Here we additionally assume that the solution 
u to (3.10) is continuous in H. According to (3.8), for u~ K we have u = 0 on ~2, so 

v = u + w satisfies (2.3). Further, we consider an arbitrary function ~K~HI(C~,~I), in 

whichCL~l={Xl, X2: (x1--~)~+x~<e~} and ~ =0 for (x~,x~)~R\CLqAH. Here (~, 0) is any 

internal point on the segment Es and el =0,5min (I, I + ~, tg (T/2--g/4)--~). As u~ HI(n), 

we can transform a(u, u--~)--L(u -- ~) by means of Green's formula. We use (2.1) and (3.9) 

to get from (3.10) that 

S o,~ (zl, O) -- ~ (x~, 0)1 dx~ >~ O. (xl, O) [ul 
~-e~ 

That ~ belongs to set K imposes no constraints on the values of q~ at points on E3, but 
then the latter inequality implies that the second condition in (2.7) is met. 

Consequently, the condition is a natural one for functional (3.5). An analogous argument 
shows that (2.6) is obeyed for points on F for v = u + w. 

These properties of (2.5)-(2.7) of v can then be used again with Green's formula to 
transform (3.10), which gives 

0 
COv 1 

_Jz~ (xl, i) [u~ (x,, t) --  ~ (z~, 1)1 d ~  < O. (3.12) 

Let l' be any closed subinterval in segment E I and D a function in the Co~176 ') class satis- 

fying 0 ~ ~ ~ I, , but otherwise arbitrary. We consider the vector function ~ ~ Ht(IIL , 

for which the trace of the first component in E l is given by ~11z I = (i ~ ~L)Ullzt q- ~ (N -- I) 

(there is no doubt that such ~ exists). For u ~ K , we have ~i(xi, I) ~ N(xl) -- i for all x I 

[--l, 0] so ~ ~ K . We substitute that expression for ~i(xi, I) into (3.12) to get 

~ av  1 
~ , ~ ( u ~ -  ~ + i) ~dY,' < O. 

We repeat a similar argument, in which ~p I [Z i  = (I ~- ~)UI[Zl -- ~(q -- i) 

~, aVl i ~<Ul -- :q + I) ~d~'~ 0. 

, to get from (3.12) that 

Consequently 
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~r ~vl 
(~ -- ~ + i) ~ d~' = 0 

As E'~- El is arbitrary, and as the nonnegative function ~ from C0~(E ') is arbitrary, we re- 
call that ei--N = vl on E i by virtue of (3.3) and (3.4), so we conclude that 

(v~ + 1)aul/ax~ = 0 on E. (3.13) 

We now consider the function ~HI(H) , for which ~ilz i = uilz1--%. Here X is any func- 

tions on I i that satisfies %~Hi/2(~i) N C~ 0- If u~ K , it is clear that ~ K  , 
and we return to (3.12) to get 

Ox 2 Z dE 1 <~ O. 
~, 

As X~0 is arbitrary, we have 

OI)I/6~X 2 ~ 0 on ~1' (3.14) 

to be understood in the sense of H-i/~(Zi). 

Then (3.2) with (3.14) and (3.1) with (3.13) represent a set of conditions satisfied 
by the solution to that minimization on part Z i of the boundary of 9. Continuity of v i in 
implies that one can consider the set Zi- = {(xl, z2)~ ~i: ui(zi, z~) +i<0}. From (3.2) and 
3.12)-(3.14) we proceed as in examination of the Signorini problem [15] to show that 

~U?OX 2 = 0 on El" (3.15) 

In the sense of a measure on E I .(3.15) means that on the set ~I- , where the attachment 

condition is not met (sinceu1<--i on that set), one instead satisfies the condition for 

ideal slip. On the other hand, (3.13) shows that at those points in the E1\E ~- set where 

Ovl/ax~<O , the attachment condition is necessarily met. 

Unfortunately, we have no information on the structure of set ~i- Arguments based on 

the [1, 2] results, which are briefly presented in sec. 2, lead to the inclusion that for 
0<V<~ the El set is nonempty and contains a certain interval (-e2, 0) analogous to the 
suction gap in the filtration of a liquid through a dam [15]. 

To conclude sec. 3, we note that conditions (2.7), which are satisfied by the solution 
(w, p) as constructed with the one-sided constraint for the (2.1) system, enable one to ex- 
tend that solution into the region ~ symmetrical in relation to H about the x I axis. 

That is, v I and p are continued in an even fashion in ~, while v 2 is continued in an odd 
fashion with respect to variable x 2. The continuation is defined in the region (z i, x2)~, 

xi~--Z , and it may be called an approximate solution to the modified treatment for filling 

of a planar capillary (asymptotic for Re-+0, Ca-+0). In that solution, the energy dissipa- 
tion rate is finite, and the dynamic contact angle takes any fixed value in the range (0, ~). 
An important feature is that the tangential stress at the wall as expressed by (3.14) is sign- 
definite. The correct sign in that inequality is an additional confirmation of the physical 
reasonableness of the initial (3.2) assumption. 

4. Rotating Container. We consider a two-dimensional treatment for the stationary mo- 
tion of a liquid partially filling a circular region with radius R. The boundary to the 
region is a solid impermeable wall rotating with constant angular velocity ~ > 0 around the 
center of the circle. The liquid is acted on by the force of gravity (acceleration g), which 
is directed along the negative x 2 axis. We take the origin at the center of the circle and 
denote the region occupied by the liquid by ~, as in Sec. i. Part of the boundary of ~ is 
free and is denoted by F (Fig. 2). The other part of the boundary, Z, is an arc of the circle 

r---- (zi2-~ x22) I/2 = i, and on it we specify obedience to the low-flow condition and an inequal- 
ity that resembles (3.2). The scales are: length R, velocity ~R, and pressure 0m~. 
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This case has not only a dynamic contact angle ? (0<y<~) and parameter ~(I~!<~/2), 

which expresses the container filling (Fig. 2), but also three dimensionless positive param- 

eters: the Reynolds number Re = e~R/v , the Bond number Be = pgR2/o , and the capillary 

number Ca = pv~fl/o. 

As before, we take Ca as small, whereas no such constraint is imposed on Re and Be. One 

can thus act in the spirit of Sec. 2 to reduce the treatment involving an unknown boundary 
approximately to one for a fixed region. We assume that F line is unambiguously projected on 
the x I axis and define the equation as x= =/(x~). In the first approximation with respect to 

the small Ca, we get a boundary-value treatment for f: 

(977-->)' /' - - B o / = C  f o r  ] Xl ] < c, os o~; ( 4 . 1 )  

COS~ 

C - -  cos (? - -  a 2cosB~ .I /(xl) dxl; ( 4 . 2 )  
--COS~ 

/ '  = +__ctg (~ - -  0r fo r  x 1 ---- ____.cos a ( 4 . 3 )  

(a prime denotes differentiation with respect to xl). The solutions describe the forms of 
equilibrium for a heavy liquid in a circular region having the unambiguous projection property 
(in [16], equilibrium forms were considered that are not so projected on the x I axis). The 
(4.1)-(4.3) treatment is soluble subject to certain constraints of inequality type on a, 7, 
and Be (in addition to those above). The solubility conditions are contained in inexplicit 
form in [15]. We assume that those conditions are met. There is a solution in the form of an 
even function f(xl) for any Be > 0 and ~ close to 7 - ~/2. If ~ = Y- ~/2, the unique solution 

is f = sin a. 

We now define the region ~ 2  by r ,< i ,  x2</~i), with the boundary a~ = F U E , 

where F = {xl, x~: x2 =/~i), [xl]<eos~},E ={x I, x2: r = i, x~<sina}. The points x I =~eos ~, 

x 2 =sin a and xl = cos a, x~ = sin a are ones of three-phase dynamic contact. 

The formulation consists in determining the pair of functions w and p satisfying the 
Navier-Stokes equations 

A v - - v p  - - - - R e v ' v v  , V ' V  ~ 0 i n Q  (4.4) 

and the conditions at the boundary of the region 

V.n=0 on F; (4.5) 

s . D ( v ) . n  =0 on F; (4.6) 

ur----0 , v 0 = i on 2~; (4.7) 

U r = 0 on ~'I U 23; (4.8) 

l) 0 < ~ on 21 U 23- (4.9) 

Here p is the difference between the pressure in the liquid and the hydrostatic pressure in 
the liquid and the hydrostatic pressure gRx2~; , while n and s are unit vectors for the 
exterior normal and the tangent to F; v r and v@ are the projections of vector v on the axes 

of the polar coordinate system r and 0 = arctg (x2~1). . By E~ (i ~ I, 2, 3) wedenote the compo- 

nets of set Z defined by E I ~ {(xl, x2) ~ 2, --~-- a< O<--~-- a-~ 6}, 2~ ={(x 1, x2) ~ ~,--~-- 

+ 5<0 <~-- 5}, E 3 = {@I, x2) ~ E, a--6< 0<a} (Fig. 2) 5 ~ (0, ~ + a) being a constant. 

Inequality (4.9) means that the absolute value of the tangential velocity of the liquid 

on the parts of the wall adjoining the free boundary does not exceed the velocity of the wall 
itself. This reflects the rational concept that the free boundary and the force of gravity 
have retarding effects on this flow as generated by the container's rotation (in contrast, 
in the capillary filling, the liquid is retarded at the walls, so the corresponding (3.2) 
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Fig. 1 

Fig. 2 

rewritten in terms of Ivl[ will have a sign different from that in (4.9)). 

To close the formulation, we supplement (4.4)-(4.9) with 

Ovo/Or_ve<O on E 1U Ea; 

(ve-- j)(Ovo/Or--ve)  = 0 on 2 1 U  28. 

(4.10) 

(4.11) 

Because of (4.8), the quantity on the left in (4.10) is equal to the dimensionless tangen- 

tial stress 2Dr% at the wall r = I. If the liquid fills the horizontal container completely 
i.e., F is empty, and if the attachment condition is obeyed at the wall, the sole mode of 
stationary flow is rotation as a solid: v r = 0, v o = r, so D(v) = 0. When there is a free 
boundary, the rotation of the liquid relative to the container is retarded, which leads to a 
nonzero (and nonpositive) frictional stress at the wall. This is expressed by (4.10), while 
(4.11) can be written as (vo---l)Dro = 0for--~--a<0<--~-- ~ + 8 and ~--6<0<~, so it 

means that on the parts Z l and 13 of the cavity boundary, one has obedience either to the 

attachment condition or the condition for ideal sliding. 

The second equation in (4.7) represents obedience to the attachment condition on E 2. If 

12 is empty (which corresponds to 6 = ~/2~-~ ), (4.4)-(4.11) has the trivial solution v = 0 

and p = const. Conversely, if sets E I and Z 2 are empty (i.e., if 6 = 0), there is no solu- 

tion in the class with finite Dirichlet integrals. This justifies introducing 6. The deter- 
mination of it (6 is intuitively very small) lies outside the phenomenological description 
(see a discussion in [3, 14, 17]). 

5. Solubility of (4.4)-(4.11). The (4.4)-(4.11) problem differs from that considered 
in section 3 for Re > 0 in that it cannot be referred to minimizing any functional, but it 
is found that it allows a general formulation in terms of a variational inequality. We first 
introduce some definitions. 

For vector functions ~, 9, and X smooth in ~, we define the expressions 

a(cp, ~) = S D(~ : D~dx; ( 5 . 1 )  
.q 

b(~, %, ~) = ~ ~.Vx.~pdx. ( 5 . 2 )  

The bilinear form a(% ~) and the trilinear one b(% X, ~) are defined also if the elements 
of ~, %b, and Z belong to a Sobolev space HI(-~ (for (5.2), this follows from the embedding 
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of H'(~) in L~(Q)) We define the space Ht(-Q) as the closure in norm I I (~ l iHl(~)  - - -  la(r r 
for the set of solenoidal vector functions ~(x)smooth in ~ and that satisfy 

r = 0 on r ,  % = 0 on Z1 @ E3; ( 5 . 3 )  

= 0 on Y~. (5.4) 

Spac~ H~(~) is a Hilbert one; (5.1) defines the scalar product of the tp and ~ elements 
in it. 

Functions from the lit(Q) class are subject to the Korn inequality 

and the Poincare-Friedricks inequality 

[2 ,( I + t ~ dz < c+ II + ,Ir,'c~> 

(C 3 and C~ are positive constants). The form b(~, %, ~) has the important features 

b(+, ~ ,  ~) ----0; 

b(~, %, r ~ --b(+,  ~,  ~) 

(5.5) 

(5.6) 

for any ~,~ and % from Ht(fl).. (5.5) follows from the representation b(~,~,~)= 

c.--,!.V.(~l~]~)dx with (5.3)and (5.4). To demonstrate (5.6), it is sufficient to subtract 

(5.5) from b ( % ~  + % , ~ + % )  = 0 

We now construct a solenoidal vector field w(x) such that wt = 0, w0 = i on Z 2. The 

construction contains an element of choice, which we utilize, namely we put 

r 2- ta$  ~ a . ,  z 
Wr = 2r a0' w0 = T ~ t t r  - -1 )~ ] ,  

in  which  ~ i s  a Hopf c u t - o f f  f u n c t i o n  t h a t  s a t i s f i e s  + ~  C ~ ( ~ ;  

F o f  t h e  bounda ry  o f  ~, w h i l e  ~ : 1 on Z2, and f o r  any  Re > 0, 

( 5 . 7 )  

= 0 n e a r  t h e  component 

one has- 

[ b (ll, U, W)} "~ 2 ~  I11"] IIHI(Q ) (5.8) 

no matter what u E H t ( ~ ) .  The method of constructing ~ with those properties has been given 
in [9]. 

We denote by q(8) the trace of ~ on the arc Z of the circle r = i. It is clear that 

~ C0~[--~--~, ~]and q = i for 0~ [--~--~ + 6, ~--6]. By K we denote the set K ~ {~ 

Ht(~): ~0<~i--~(0) in ~i U ~ , which is closed and convex in Hi(~). We introduce a new 
unknown vector function u from 

V = U - - ~ W  

in which w is a vector having components defined by (5.7). The function 

defined as the solution to the variational inequality 

a(u ,  u - -  q~) - -  R e  [b(u,  u - -  q>, u)  + b ( w ,  u - -  q~, u)  + 

J-  b(u, u - - ~ ,  w) l < ~ . L ( u - - ~ ) V ~ E  K, 

in  which  L i s  a l i n e a r  f u n c t i o n a l  upon t h e  s p a c e  Ht(~q), d e f i n e d  by 

u ~ H ~ ( ~ )  

(5.9) 

w i l l  be 

(5.1o) 
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L (u) = - -  f (D (w) : D (u) - -  Hew. Vu. w) dx. 
~ ( 5 . 1 1 )  

One cannot determine whether (5.10) is soluble by referring to standard results in the theory 
of variational inequalities; instead, we consider the auxiliary problem 

a(u, u - -  (p) - -  Re[b(r  u - -  q~, u) + b(w, u - -  q), u) + 

+ b(u, u - -  q), w)] ~<~ L(u - -  q)) VqO ~ K 
( 5 . 1 2 )  

in which ~ is a specified element in K. By a~(u, ~) we denote a form bilinear in u and ~ : 

a~(u, ~) = a(u, ~) - - R e [ b ( ~ ,  ~,  u ) - [ - b ( w ,  ~,  u ) + b ( u ,  ~,  w)] .  

Then (5.12) is rewritten as 

(5.13) a , (u ,  u - - ~ ) ~ L ( u - - ~ )  V ~  K. 

The f o r m  ar ~) i s  c o e r c i v e  upon  K - K f o r  any  r  , s i n c e  

i a , ( u - -  ~, u - -  ~ ) ~ 7 [ l u - -  ,,2 IM~(u) Vu, ~ K. 

To p r o v e  t h i s  i n e q u a l i t y ,  i t  i s  s u f f i c i e n t  t o  u s e  t h e  d e f i n i t i o n  o f  ( 5 . 1 )  f o r  f o r m  a ,  i d e n t -  
i t y  ( 5 . 5 ) ,  and  i n e q u a l i t y  ( 5 . 8 ) .  The L y o n s - S t a m p a c c i  t h e o r e m  [15 ]  i m p l i e s  t h a t  ( 5 . 1 3 )  w i l l  
h a v e  a s o l u t i o n ,  a s  w i l l  ( 5 . 1 2 ) ,  and  a u n i q u e  one  a t  t h a t ,  u ~ K  , f o r  a n y  ~ K ,  w h i c h  
d e f i n e s  t h e  n o n l i n e a r  o p e r a t o r  A:  K - + K  , w h i c h  p u t s  t h e  s o l u t i o n  u : A ( ~ ) . t o  ( 5 . 1 2  i n t o  
correspondence with an element of ~. 

We demonstrate that A is continuous. Let ~i and ~2 be any elements in K. We first put 
in (5.12) that ~ =~l,u = u1__----A0~1) , ~ = u2__--___A(~2),and then ~: ~2, u : u2, ~ : ul, and add the 

resulting inequalities. We use (5.1), (5.5), and (5.6) with the identity b(~1, u~ -- us, ul) 

b(~2, us - -  ul, u2) = b(~l - -  ~2, ul - -  us, ul) '  t o  g e t  

I I . ~ - . ~  - ~n~(~)~ ~ e  [b ( ,~  r u~ - -  us, " 0  + b (u~ - -  u~, u~ u,,  w)] ~< O. 

Then from (5.8) and the Cauchy-Bunyakovskii inequality we get the bound 

[[ ul - us I1.1(~) < 2he II ul [IL~(~> I] ~1 - -  ~= llL~<~) ( 5 , 1 4 )  

As HI(~) i s  embedded  i n  L4(Q), ( 5 . 1 4 )  i m p l i e s  t h a t  o p e r a t o r  A i s  c o n t i n u o u s .  

By K N we denote the set KN= {~K:[i~I]H~(~)~N } and show that for a sufficiently large 

N > 0, the inclusion u = A ~  K N, applies if ~ K. We put ~ =0 in (5.12), which 

is possible by virtue of the definition of K, and from (5.5) we get 

2 II u ][nl(~) -- Re b (u, u, w) ~< L (u). 

We use the (5.8) bound with the (5.11) definition to get from the latter inequality that 

as was required. 

Set K N is closed and convex in HI(Q) , Let {~m}, m = I, 2 ..... be any element sequence 

in K N that converges weakly in HI(Q). The sequence {um} of the corresponding solutions to 

(5.12) converges strongly in HI(Q) . The proof of this is based on the compactness of the 
embedding operator for the space HI(Q) in L~(Q), together with (5.14) and the (5.15) a priori 

bound. This implies that A is completely continuous and transfers K N into itself (N is 
defined in (5.15)). Schauder's theorem shows that this operator has a fixed point in K N, 
which corresponds to the solution u to (5.10). 
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From u we derive v via (5.9). By virtue of (5.3) and (5.4), which u satisfies as an 
element of HI(~) , and by virtue of the (5.7) definition for w, conditions (4.5), (4.7), 
and (4.8) are obeyed for v. Condition (4.9) is met because of (5.7) and (5.9) and the 
definition of K. Then we use (5.10) and proceed by analogy with Sec. 3 to show readily 
that w is the general solution to (4.4) and satisfies (4.6). We now assume additionally 
that v~ C~ , and then in accordance with the Sec. 3 arguments we establish that (4.10) 
and (4.il) apply for v e. 

We summarize what has been said. The (5.10) problem has a solution u for any Re ~ 0. 
The function v = u +w satisfies (4.4)-(4.9) and also satisfies (4.10) and (4.11) subject 

to the additional assumption on the continuity in ~. 

6. Concluding Remarks. A. The Sac. 3 scheme has been used to examine the axisymmetric 

model problem of capillary filling, which amounts to a (3.10) variational inequality for axi- 

symmetric vector fields. 

B. The rotating-container problem allows of extension to the case where the dynamic 
contact angle has different values at the points where the liquid is advancing on the wall 
and receding from it. This contact-angle hysteresis has repeatedly been observed, as in 
the experiments discussed in [17]. The changes in the formulation for (4.4)-(4.11) are 
related only to the new definition of ~ and the components of the boundary Zl, Z2, E~, and 
F. 

C. Section 5 shows that a solution exists to (5.10), and it can be shown that this solu- 
tion is unique for sufficiently small Re. 

D. We have not considered here whether the problems are soluble for moving points of 
contact in an exact formulation, which are problems with unknown free boundaries. One hopes 
that variational inequalities will prove effective here, at least for small Ca. However, for 
that purpose one needs first to examine the smoothness of the solutions to (3.10) and (5.10). 
It has been shown [18] that the problem is soluble with an unknown boundary of (1.1)-(1.7) 
type, in which the attachment condition at the capillary walls is replaced by the condition 
for proportionality between the tangential stress and the difference between the tangential 
velocities of the liquid and wall. 

E. There is an open question on the structure of the contact set in the solutions to 
(3.10) and (5.10), but some definite information can be obtained from a local analysis on 
how the solution behaves near the points where the attachment and slipping conditions change. 
We consider capillary filling for definiteness. Let one of those points have coordinates 

x 1 = --6<, x2 = I, and for sufficiently small Ix1 + ~I, X1~--6 , the conditions for ideal slip 

(2.8) and (2.9) are met, while for xi<--6, the (2.10) attachment conditions are met (the 

case where the inequalities have opposite signs ban be examined similarly). We introduce the 

polar coordinates r = [(xi~6) z ~(x,-- i)~] I/~, 0 =arctg[(x2--1)/(xaq-6)] and denote by v r and v o 

the corresponding projections of the velocity vector v. We define the current function 

~(r, 0) by vr--~r-10~/OO, ve = --O~/Or, and from (2.1) and (2.8)-(2.10), ~ satisfies 

AA~ ~ 0 for r<e, - - ~ < O < O  (6.1) 

( e~(0, 6) is a certain constant) as well as the edge conditions 

( 6 . 2 )  
= 0 ,  A M - O  for 0 = 0 ,  O < r < e ;  

= 0 ,  04/08 = r for O = - - = ,  O < r ~ < e .  ( 6 . 3 )  

We a d d i t i o n a l l y  s p e c i f y  t h a t  ~ b e l o n g s  t o  t h e  S o b o l e v  s p a c e  H 2 in  t h e  s e m i c i r c l e  $8 = {r, O: r 

< e,--~ < O < 0}, which guarantees that the Dirichlet integral for vector v in region S E is 

finite. 

The r + 0 asymptote for the solution ~)~ H~(S~) to (6.1) satisfying (6.2) and (6.3) is 

examined by a method developed in [19, 20]. We omit the details and give the result: 

( 6 . 4 )  
~ - - r  sin 0 + kr~/Z(sin 0/2 + sin 30/2) + O(r ~ In r) 
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for r - ~ 0 ,  --~0~0 (k is a certain constant)�9 The asymptotic representations for 0~TOr, 
0~/d0, A~ a re  ob ta ined  from (6 .4)  by formal  d i f f e r e n t i a t i o n ,  and in p a r t i c u l a r  fo r  5~ 

Aq~ = 2 k r - l Z  ~ sin 0/2 + O(ln r). (6.5) 

Then we note that by virtue of ~ = 0 on 0<r~, 0 =-~ , we have Ovl/Oz ~ = A~ (Vl is the 

projection of v on the x I axis). That equation together with (.6.5) and (3.14) leads to the 

conclusion that k ~ 0. On the other hand, by virtue of (6.4), we have ul = --I + 2kr I12 + O(rln r) 

for r § 0 and e = 0, which agrees with (3.2) only for k < 0. Consequently, k = 0. This sug- 
gests that the solution to (3.10) has greater regularity near the points where the attachment 
and slip conditions change than does the solution to (2.1)-(2.10), in which the positions of 
those points are prescribed in advance. 

Note Added in Proof. V. A. Kondrat'ev pointed out to one of us that the residual terms 
in (6.4) and (6.5) can be replaced by O(r 2) and O(i) correspondingly, which implies that the 
tangential stress is bounded near the points where the attachment and slip conditions inter- 
change. We are indebted to V. A. Kondrat'ev for that information. 
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